RNF168 Ubiquitinates K13-15 on H2A/H2AX to Drive DNA Damage Signaling
نویسندگان
چکیده
Ubiquitin-dependent signaling during the DNA damage response (DDR) to double-strand breaks (DSBs) is initiated by two E3 ligases, RNF8 and RNF168, targeting histone H2A and H2AX. RNF8 is the first ligase recruited to the damage site, and RNF168 follows RNF8-dependent ubiquitination. This suggests that RNF8 initiates H2A/H2AX ubiquitination with K63-linked ubiquitin chains and RNF168 extends them. Here, we show that RNF8 is inactive toward nucleosomal H2A, whereas RNF168 catalyzes the monoubiquitination of the histones specifically on K13-15. Structure-based mutagenesis of RNF8 and RNF168 RING domains shows that a charged residue determines whether nucleosomal proteins are recognized. We find that K63 ubiquitin chains are conjugated to RNF168-dependent H2A/H2AX monoubiquitination at K13-15 and not on K118-119. Using a mutant of RNF168 unable to target histones but still catalyzing ubiquitin chains at DSBs, we show that ubiquitin chains per se are insufficient for signaling, but RNF168 target ubiquitination is required for DDR.
منابع مشابه
An RNF168 fragment defective for focal accumulation at DNA damage is proficient for inhibition of homologous recombination in BRCA1 deficient cells
The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is in...
متن کاملErratum: The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A
During DNA damage response, the RING E3 ligase RNF168 ubiquitinates nucleosomal H2A at K13-15. Here we show that the ubiquitination reaction is regulated by its substrate. We define a region on the RING domain important for target recognition and identify the H2A/H2B dimer as the minimal substrate to confer lysine specificity to the RNF168 reaction. Importantly, we find an active role for the s...
متن کاملUbiquitin-H2AX fusions render 53BP1 recruitment to DNA damage sites independent of RNF8 or RNF168
The mammalian E3 ubiquitin ligases RNF8 and RNF168 facilitate recruitment of the DNA damage response protein 53BP1 to sites of DNA double-strand breaks (DSBs). The mechanism involves recruitment of RNF8, followed by recruitment of RNF168, which ubiquitinates histones H2A/H2AX on K15. 53BP1 then binds to nucleosomes at sites of DNA DSBs by recognizing, in addition to methyl marks, histone H2A/H2...
متن کاملNucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling
Histone ubiquitinations are critical for the activation of the DNA damage response (DDR). In particular, RNF168 and RING1B/BMI1 function in the DDR by ubiquitinating H2A/H2AX on Lys-13/15 and Lys-118/119, respectively. However, it remains to be defined how the ubiquitin pathway engages chromatin to provide regulation of ubiquitin targeting of specific histone residues. Here we identify the nucl...
متن کاملUbiquitin and the DNA damage response
The rapid accumulation of signaling and repair factors in the vicinity of DNA lesions is an integral part of the cellular DNA damage response (DDR) to DNA double-strand breaks (DSBs).1,2 This is initiated by posttranslational modifications of core histones, to which various effector proteins bind. The priming modification is ATM-mediated phosphorylation of histone H2AX at Ser-139 (γ-H2AX), a ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 150 شماره
صفحات -
تاریخ انتشار 2012